Design Notes for New Telemetry Software

Copyright 1999-2006, United States Government as represented by the
Administrator of the National Aeronautics and Space Administration.
No copyright is claimed in the United States under Title 17,

U.S. Code.

This software and documentation are controlled exports and may only be
released to U.S. Citizens and appropriate Permanent Residents in the
United States. If you have any questions with respect to this
constraint contact the GSFC center export administrator,
<Thomas.R.Weisz@nasa.gov>.

This product contains software from the Integrated Test and Operations
System (ITOS), a satellite ground data system developed at the Goddard
Space Flight Center in Greenbelt MD. See <http://itos.gsfc.nasa.gov/>
or e-mail <itos@itos.gsfc.nasa.gov> for additional information.

You may use this software for any purpose provided you agree to the

following terms and conditions:

1. Redistributions of source code must retain the above copyright
notice and this list of conditions.

2. Redistributions in binary form must reproduce the above copyright
notice and this list of conditions in the documentation and/or
other materials provided with the distribution.

3. All advertising materials mentioning features or use of this
software must display the following acknowledgement:

This product contains software from the Integrated Test and Operations

System (ITOS), a satellite ground data system developed at the Goddard

Space Flight Center in Greenbelt MD.

This software is provided ‘‘as is’’ without any warranty of any kind,
either express, implied, or statutory, including, but not limited to,
any warranty that the software will conform to specification, any
implied warranties of merchantability, fitness for a particular
purpose, and freedom from infringement and any warranty that the
documentation will conform to their program or will be error free.

In no event shall NASA be liable for any damages, including, but not
limited to, direct, indirect, special or consequential damages,
arising out of, resulting from, or in any way connected with this
software, whether or not based upon warranty, contract, tort, or
otherwise, whether or not injury was sustained by persons or property
or otherwise, and whether or not loss was sustained from or arose out
of the results of, or use of, their software or services provided
hereunder.

Chapter 1: Overview 1

1 Overview

I’'m presenting here a preliminary design for the telemetry processing software. This is
intended as a starting point for our discussions, and the level of detail varies from section
to section. Please feel free to e-mail me or the group with questions, suggestions, ideas, and
criticisms.

This document is on the WWW at http://sunland.gsfc.nasa.gov/~ tcw/portable/Top.html.

1.1 The Basic Telemetry Flow

Frame ----> Transfer frame ----> Packet --—-> Data -——=> CVT
source sorter re-assembler unpacker

Transfer frames flow from the frame source, either an I&T front end or a ground station,
to a transfer frame sorter. The sorter breaks the master channel into its virtual channels,
and makes each virtual channel available in any conbination to downstream processes. The
packet re-assembler reads transfer frames on a single virtual channel and re-assembles the
source packets, which are made available to downstream processes. The data unpacker
reads source packets, extracts individual telemetry values, and writes them into a current
value table (CVT). (This is what the program t1mClient does currently.) Each unit here —
the frame sorter, the packet re-assembler, and the unpacker — is either an executing process
or a thread.

Downstream processes usually connect to upstream processes. All processes accept con-
nections from any number of downstream processes. The sorter and re-assembler will share a
common output module, which is actually what does the sorting and also does the archiving
for most cases.

We additionally will construct an archiver program, a playback program, and a modified
packet dumper. The archiver will accept frames or packets (It shouldn’t care what it’s
getting.) and write them to disk. The playback program will read the archives and act as
a data source exactly as if it were a front-end or ground station, frame sorter, or packet re-
assembler. (Obviously the low-level interface to the various frame sources may be different.)
The packet dump program will connect to this stream rather than using DBIF tags and
channels as it does now. We may consider eliminating DBIF packet tags.

Where possible, I would like to take advantage of multi-threading in the design of the
telemety system components.

1.2 The Common Output Module

The basic design of the output module is as follows: It has a single program interface
through which it receives a data object an a sort key. The sort key is the VC id for transfer
frames, the application id for packets. According to the key, the data object is sorted into
output queues. A single object may be placed in any number of queues, even zero. If the
entire object won’t fit in a queue, no part of it is inserted in that particular queue. (Since
the output module will use virtual memory for it’s queues, this case never should arise.)

Oct 7 1995

Chapter 1: Overview 2

In a non-multi-threaded design, the output module returns a list of file descriptors to be
tested for writeability (in a select). It also provides a function to be called when an output
descriptor is ready to be written to.

In a multi-threaded design, each connection is handled by a thread which spends its time
blocked on a write to the output, or blocked on a semaphore waiting for more data from
the input thread.

Each output may be set up to do TCP/IP or ISIS communication.

1.3 The Transfer Frame Sorter

The transfer frame sorter receives the transfer frames from the frame source — a ground
station, I&T front end, frame archive replay, and so on. It demultiplexes the virtual channels
from the master channel and makes the individual virtual channels available to downstream
packet re-assemblers and other processes.

The sorter unpacks from the transfer frame primary header the VC ID and the master
channel sequence count. It checks the CRC status for the frame (attached by the frame
source) and for master channel sequence errors, and keeps count of the number it finds. It
optionally may drop any frames with bad CRC.

Through the memory management system, See Chapter 2 [Building Blocks|, page 4 the
sorter (and the re-assembler) also will perform frame archiving.

1.4 The Packet Re-Assembler

The packet re-assembler takes transfer frames on one virtual channel and re-assembles
the source packets contained in the frames. If we want to look at packets from multiple
virtual channels, we run one re-assembler for each VC in which we are interested.

When the re-assembler receives the first transfer frame, it unpacks the first header pointer
from the frame header and begins extracting the packet. It continues chaining packets
through transfer frames, checking that the virtual channel counter remains contiguous. If
the VC sequence is broken, the re-assembler starts over. It either throws away or fills (and
properly annotates) partial packets resulting from a VC sequence error.

The re-assembler should handle segmented packets, allocating temporary storage for par-
tial packets as they are reconstructed. It should handle all CCSDS-approved segmentation
schemes.

The re-assembler builds the packet annotation header using information from the transfer
frame header, transfer frame annotation, and it’s own observations.

1.5 The Data Unpacker

The data unpacker is a slightly modified tlmClient. Unpackers normally receive packets
from one re-assembler only, but could receive from multiple re-assemblers, I suppose.

Oct 7 1995

Chapter 1: Overview 3

1.6 The Telemetry Flow Controller

The telemetry flow controller is the parent process of all other processes in the telemtry
flow. It is an X program, which provides a graphical interface to the entire flow and to each
process in it. STOL directives for flow control will be sent to this controller process. (I've
made up a rough drawing of what the GUI might look like.)

The controller spawns each child at the end of a pipe or socketpair() connection. Children
automatically configure their standard inputs as control inputs and the standard outputs
as response/status outputs. The controller may kill its children to shut them down.

The controller offers an animated graphical display of the telemetry flow. There’s an
icon for each active process with lines among them indicating data flows. Users may drag
an icon and drop it on another to form a connection. Alternatively, they may drop it on
the canvas and use the mouse to connect it’s data sources and sinks. Colors and flow-line
annimation show data types and flows.

Clicking on an icon in the flow would bring up a status and configuration window for
that process.

The controller also controls and displays status for the frame source.

I don’t know what the default startup condition of child processes should be: Should
they immediately begin listening for additional connections? Should they begin reporting
status periodically?

Each program in the flow should come with a second program which provides the GUI
specific to that program. The flow controller starts the program GUI when the user requests
one. The GUIs should not be built in to telemetry handling programs for the sake of
efficiency in those programs.

1.7 The Telemetry Archiver and Playback

Telemetry archiving normally will be done through a virtual memory buffer management
package, documented elsewhere. However, an archiver program also should be provided to
do archiving on remote systems if necessary. The telemetry archiver takes transfer frames
or source packets and stores them in disk files.

The telemetry playback reads files created by the archiver and acts as a data source for
the objects in the file: If the file contains transfer frames, a frame sorter can connect to
the playback; if it contains source packets, a data unpacker can connect to the playback. It
may be possible to allow a re-assembler to connect to a frame playback, also, depending on
the details.

Oct 7 1995

Chapter 2: Building Blocks 4

2 Building Blocks

The Frame Sorter and Packet Re-assembler programs are constructed from a collection
of tasks and several other building blocks. Those other building blocks are presented here
as programming objects.

T’'ve tried to take an object-oriented approach to designing this software. I've divided it
into somewhat interrelated object classes: pools, buffers, queues, and sorters.

Pools are virtual memory areas, memory mapped files. Buffers and queues are allocated
from the pools.

Buffers hold a data objects like transfer frames or packets. Queues are FIFOs of buffer
handles. Queues are intended to be associated with each output in what the introduction
calls the Common Output Module. See Section 1.2 [Common Output Module], page 1

Note that pools and queues are different things. Many queues can reference buffers
stored in the same pool. In practice, we are likely to have two active pools: one being
archived, and one not. However, we will have many queues, each of which may reference
buffers from both pools.

On the other hand, queues and outputs correspond one-for-one. Each output has a queue
and every queue is associated with an output.

2.1 Memory Management

The frame sorter and the packet re-assembler may require large amounts of system
memory to buffer data when receiveing high-rate telemetry. This certainly will be the case
if the system is required to serve data to units which cannot keep up with the data rate;
for example, a T1 line.

In the frame sorter and packet re-assembler, I want to use a simple, homemade memory
management package that draws memory from the virtual memory system using the mmap ()
system call.

mmap () maps a disk file into virtual memory. This is the system call that loads shared
libraries, and, on Solaris 2.5, underlies the read() and write () system calls. mmap() also
gives a program access to swap disk space.

One advantage of using simplified memory management with mmap() over the sbrk()
system call underlying malloc () is that memory allocated through malloc() and sbrk()
cannot be returned to the system. Once a process grows with these calls, it cannot shrink.
Using munmap (), programs acquiring memory with mmap() can give the memory back to
the operating system when it no longer is needed.

Another advantage of using mmap () for our application is that it gives us built-in archiv-
ing. If we allocate transfer frame buffers, for example, with an mmap ()-based system, we
can simply leave on the disk the file we’ve mapped to obtain our virtual memory for those
buffers.

Oct 7 1995

Chapter 2: Building Blocks 5

2.2 pools of virtual memory

Pools are virtual memory areas from which buffers and queues are created; so, the pool
object underlies both the buffer and queue objects.

Here are the principal data structures and methods for the pool object class:

The pool object maintains a list of memory pools. Each memory pool is an mmap()’d
file. The size of each memory pool is set large enough that we don’t have to create them
often, but not so large that they occupy too much virtual memory. (I'd guess about 100MB
would be about right.) We maintain a list of them so we can use as many as we need and
free those we’ve finished with.

The pool object allocates buffers end-to-end sequentially through the list of individual
memory pools. As one pool is exhausted, a new pool is created and added to the list. When
the program is finished with all of the the buffers in a pool, the pool’s memory is returned
to the system.

The pool object supports two methods of accessing data in the pool buffers: sequential
and non-sequential. If the buffers are to be accessed in the order they were created, and
each buffer is to be accessed only once, the sequential method can be used. If the buffers are
to be accessed in non-sequential order, or if each buffer may be accessed more than once,
the non-sequential method must be used.

The pool object maintains a retrieve pointer for each memory pool and allows applica-
tions to retrieve buffers in the order they were allocated, but each buffer may be retrieved
only once. If all the buffers in a memory pool have been retrieved, and the pool is no longer
that from which new pools are allocated, the memory pool is removed from the list.

The pool also maintains reference counters for each memory pool. Since the pool allocate
buffer method returns a buffer pointer, the buffer memory may be accessed directly (and in
any order) without calling pool retrieve buffer. For use with multiple queues, we maintain
a reference counter for each memory pool. If the counter falls to zero at anytime after the
memory pool is no longer the one from which new buffers are being allocated, the memory
pool may be removed from the list. Thus we can access the buffers in a pool in any order,
but still only a number of times set.

2.2.1 pool data structures

Here is are the two principal data structures maintained by an instance of the pool class:
The pool record type PoolRec (struct pool_rec) and the pool object type Pool (struct
pool_list). The Pool structure manages a list of pool records. The PoolRec structure
maintains state information on each pool in a given list.

2.2.1.1 Control record for each pool

typedef struct pool_rec PoolRec;
struct pool_rec

{
char filename [FILENAME_MAX]; /* pool file name x/
char *base; /* base address of pool */

Oct 7 1995

Chapter 2: Building Blocks 6

char *get_mem; /* ptr to first free pool byte */

char *get_data; /* ptr to oldest unread byte */

char *end; /* highest address in pool + 1 */

int size; /* size of pool in bytes */

int ref_count; /* count of references to this pool */

PoolRec *next; /* link to next pool in list */

Pool #*pool; /* pool list to which pool belongs */

};
2.2.1.2 Pool Control Structure (Pool List)

List of active pools. First pool in list has oldest unread data. Last pool is pointed to
by "new_pool"; buffers are allocated from this pool. Once all data in pool has been read,
pool may be dropped from list. If archiving of pool data is not in effect, pool file is deleted
when pool is dropped from list.

typedef struct pool_list *Pool;
struct pool_list

{
char filename [FILENAME_MAX] ; /* basename of pool files x/
int file_sn; /* file serial number, from O */
int flags; /* pool control flags */
int pool_size; /* size of all pools in the list */
int n_pools; /* number of pools in list */
PoolRec *pools; /* ptr to 1st pool in linked list */
PoolRec *new_pool; /* pool where data can be read */

};

2.2.1.3 Pool Buffers

The pool allocate buffer and retrieve buffer methods return pool buffer (PoolBuf) point-
ers.

typedef struct pool_buffer PoolBuf;
struct pool_buffer

{
char #*p; /* pointer to buffer memory in pool */
int len; /* length of buffer in bytes */
PoolRec *pr; /* memory pool where buffer lives */
};

2.2.2 pool create

The pool create method is the intialize method for the pool object and must be called
before any other method. It goes ahead and creates an initial memory pool, so you get back
a pointer to a control structure with a list of one pool. This method’s declaration is:

Pool pool_create(int pool_size, char *filename, int flags)

where:

Oct 7 1995

Chapter 2: Building Blocks 7

pool_size

filename

flags

is the size of each pool. This number of bytes should be evenly divisible by the
size of a virtual memory page for the system. This function probably should
increase the pool_size transparently to the next highest value evenly divisible
by the page size.

is the pathname of the file to be created to provide the disk space to back the
virtual memory of the pool. A sequence number beginning with ‘1’ is appended
to the given name. If subsequent pools are needed, the suffix is incremented on
subsequent file names. This argument is ignored if the flags arguments tells
us to use swap space instead of a named file.

is used to turn on archiving for the pool and to tell us to draw the pool from
swap rather than a named file.

A Pool handle is returned.

2.2.3 pool create pool

This method creates a backing file and does an mmap () to create a memory pool. This
is how virtual memory is added to a process. The PoolRec structure itself, like the Pool,
is created using good old malloc (), since we shouldn’t need to many of them.

The pool create pool method is never called directly. It is called by the pool allocate
buffer method whenever a new pool is needed to fulfill a request for a new buffer.

This method’s declaration is:

PoolRec *pool_create_pool (Pool pool)

where:

pool

is a pool handle.

A pointer to the newly created PoolRec is returned for convenience.

2.2.4 pool destroy pool

This method destroys a memory pool in a pool list. If the pool is not being archived
and it has a file associated with it, this method also destroys the file.

It’s declaration is:

PoolRec* pool_destroy_pool (Pool pool, PoolRec *pr)

where:
pool

pr

is a pool handle.

is the memory pool to destroy.

This method returns a pointer to the pool record for the next oldest memory pool from
the one destroyed. If the given pool record is not recognized as part of the given pool, the
given pool record pointer is returned. If there is no next oldest pool, NULL is returned.

Oct 7 1995

Chapter 2: Building Blocks 8

2.2.5 pool allocate buffer

This method allocates an empty buffer from the next field of bytes available in the pool.
It’s declaration is:

char *pool_alloc_buffer(Pool pool, int *size)

where:
pool is a handle of the pool from which to allocate the buffer.
size is a pointer to the size in bytes of the buffer to allocate. The variable pointed

to is set to the size of the buffer actually allocated. Since the certain alignment
rules are enforced, this may be slightly larger than the buffer size requested.

This method returns a pointer to a pool buffer of the given size or NULL on errors.
2.2.6 pool retrieve buffer

This method retreives the next field of un-retreived bytes from a pool. It’s declaration
is:

char *pool_retrieve_buffer (Pool *pool, int *size)

where:
pool is a handle of a pool from which to retrieve the buffer.
size is a pointer to an integer containing the number of bytes to return. This value

is changed to the number of bytes actually returned. It may be fewer than
requested, if the end of a memory pool is reached in fulfilling the request.
The return value is a pointer to the requested field of bytes.

Each byte may be retreived only once. When all bytes in a memory pool have been
retreived, the pool is destroyed, and it’s memory returned to the system, provided that the
pool is not at the last pool in the pool list.

2.2.7 pool adjust ref count

This method adjusts the reference count for a given memory pool. Reference counts
are maintained on each pool in a pool list. They are used by applications which do non-
sequential or multiple access to the buffers in the pool.

It’s declaration is:
int pool_adj_ref_count (PoolRec *pool_rec, int adj)

where:

pool_rec is a pointer to an individual memory pool for which the reference count should
be incremented.

adj is the number by which to adjust the reference count.

The return value is the new reference count for the given pool.

Oct 7 1995

Chapter 2: Building Blocks 9

2.3 buffer queues
Buffer queues are FIFOs of buffer handles. The BufQ buffer queue class is a subclass of
the Pool object class, and queues are created from Pool objects.

Here are the principal data structures and methods of the buffer queue object class:

2.3.1 queue data structures

typedef struct buffer_queue *Buf(Q;
struct buffer_queue

{
Q_AccessControl control;
Pool pool;

};

The Q_AccessControl field depends on what type of environment we are creating queues
in. For a non-threaded environment, this is:

typedef struct queue_access_control Q_AccessControl;
struct queue_access_control

{

int buf_count;
int fd;
};

2.3.2 queue create

This method creates a new buffer queue (BufQ). It’s declaration is:
BufQ *queue_create(char *filename, int flags)

where the filename and flags arguments are the same as for the Section 2.2.3 [pool
create pool], page 7 pool object method.

This function returns a BufQ handle, which is a pointer.
2.3.3 queue destroy

This method destroys a buffer queue (BufQ). It’s declaration is:
void queue_destroy (BufQ* q)
where q is the queue to be destroyed.

2.3.4 queue alloc buffer

The queue object "inherits" this entirely from it’s superclass buffer. That being the
case, just call the (undefined) [buffer alloc|, page (undefined) method.

Oct 7 1995

Chapter 2: Building Blocks 10

2.3.5 queue post buffer

This method posts a buffer to the end of given queue. It’s declaration is:
int queue_post_buffer (BufQ *q, PoolBuf *buf)

where:
q is the queue to which to add the buffer.
buf is a pointer to the buffer to post.

This function returns the number of buffers in the queue.

2.3.6 queue get next buffer

This method retrieves the next buffer from the queue. It’s declaration is:
PoolBuf *queue_get_next_buf (BufQ *q, PoolBuf *buf)

where:
q is the queue from which to get a buffer.
buf is a pointer to storage for the retrieved buffer handle.
This function returns the next buffer (PoolBuf) in the pool. It returns a NULL if the

queue is empty.

2.3.7 queue control

intentionally left blank

2.4 pool management

The Archiver object manages as set of pools from which buffers may be allocated to
hold a transfer frame or packet. The Archiver determines from which pool in a collection
to allocate a buffer using the same sort key used by the buffer queue object. This is how
we select which data items are placed in which archive. Note, however, that each may be
archived only once.

The Archiver object class is a subclass of the Pool object class. Here are the principal
data structures and methods for the pool buffer object class:

2.4.1 Archiver data structures

The PoolBuf if a data buffer. This is what queues and sorters use.

typedef struct pool_buffer PoolBuf;
struct pool_buffer

{
char *p; /* pointer to actual buffer, pool memory
int 1len; /* bytes of memory in buffer
int key; /* key associated with buffer data
PoolRec *pool; /* pool from which buffer allocated

Oct 7 1995

*/
*/
*/
*/

Chapter 2: Building Blocks 11

1
The Archiver is a handle to a collection of Pools from which buffers may be allocated.
The list of Pools is indexed by the sort key, which is the virtual channel or packet ID.
typedef struct buffer_pool BufPool, *Archiver;

struct buffer_pool
{

int nkeys; /* number of keys on which to sort
Pool #*key_list; /* list of pools, nkeys long
3

2.4.2 archiver manage pool

This method places a Pool object under control of an Archiver. It’s declaration is:

Archiver arch_manage_pool (Archiver arch, Pool pool, int max_key, int *keys,
int nkeys)

where
arch is a Archiver to which this pool is to be added. If this argument is NULL, a new
Archiver is created and the given pool is used as the default pool, that is, all
buffers are drawn from this pool if their key doesn’t select any other. In this
case, the keys and nkeys arguments are ignored and need not be specified.
pool is the pool to add to the collection.

max_key is the maximum key value. This must be less than or equal to the value given
when the Archiver was created.

keys is the list of keys which select this pool.
nkeys is the number of keys in the list.

This method returns it’s first argument with the new pool added, or a new Archiver
containing only the given pool, if the first argument was NULL. It returns NULL on errors.

How does this stuff get used? Like this: First, create a pool with the pool_create()
function see Section 2.2.2 [pool create], page 6, turning archiving on for the pool as appropri-
ate. Then add the pool, with a list of keys, to a buffer object with buffer_manage_pool().
Whenever a buffer is allocated with arch_alloc_buffer(), the key determines from which
pool the buffer is allocated, and, so, whether it is archived or not.

In practice we probably will never create more than two buffer pools: one which is being
archived and one which is not.

I suppose it would be better, from an object-oriented perspective, to re-implement the
create methods of the pool superclass, but this is simpler.

2.4.3 archiver alloc buffer

This method allocates a new buffer size bytes long from one of the pools in the collection
bp. The key determines from which pool the buffer is allocated. It’s declaration is:

PoolBuf *buffer_alloc(BufPools bp, int key, int size)
It returns a new PoolBuf buffer or NULL on errors.

Oct 7 1995

*/
*/

Chapter 2: Building Blocks 12

2.4.4 buffer adj ref count

This method changes is inherited from the pool superclass. Simply call the Section 2.2.7
[pool adjust ref count], page 8 method.
2.5 queue management

The Sorter manages a collection of queues. The Sorter object is a subclass of the queue
object.

Here are the principal data structures and methods of the sorter object class:

2.5.1 sorter data structures

typedef struct sorter_queues Sorter(Q, *Sorter;
struct sorter_queues

{

int nkeys; /* number of keys in the key_list

char *key_list; /* sort list indexed by key value

BufQ *q; /* buffer queue handle

Sorter(Q *next; /* pointer to next queue managed by sorter
};

The key_list is a list of nkeys characters. Each entry in the list is indexed by a possible
key value. If the entry’s value is non-zero, the key selects this pool.

2.5.2 sorter manage queue

This method places a queue object under control of a sorter object. It’s declaration is:

SortQueues *sorter_manage_queue (SortQueues sq, BufQ *q, int max_key, int
xkeys, int nkeys)

where
sq is the sorter to which the queue is being added. If this argument is NULL, a
new sorter object is created.
q is the queue we’re adding to the sorter.

max_key is the maximum key value.

keys is the list of key values for which this queue will be selected by Section 2.5.5
[sorter post buffer|, page 13. If this is NULL, then this queue will be selected
for all possible key values up to max_key.

nkeys is the number of key value in the keys list. This parameter is ignored if keys
is NULL.

This function returns a sort queue collection with the new queue added to it, or a new
sorter object if the first argument is NULL. Note that the return value and first argument
are never the same.

Oct 7 1995

*/
*/
*/
*/

Chapter 2: Building Blocks 13

2.5.3 sorter alloc buffer

This is inherited from it’s superclass. Just call (undefined) [buffer alloc], page (unde-
fined) to get a buffer in all cases.

2.5.4 sorter post buffer

This method posts a buffer to zero or more queues managed by a sorter object. It’s
declaration is:

void sorter_post_buffer(Sorter sq, PoolBuf *buf, int key)

where
sq is the sorter object.
buf is the buffer to post.
key is the key to use in selecting the queues to which to post the buffer.

This method returns the number of queues to which the buffer was added.

2.5.5 sorter post buffer

This method changes the keys which select a buffer queue (BufQ) managed by a sorter.
It’s declaration is:

int sorter_change_keys(Sorter sq, BufQ q, int *keys, int nkeys)

where:
sq is the Sorter containing the queue for which we want to chage the keys.
a is the queue for which we want to change the keys.
keys is a list of key values. The absolute value of each item in the list is a key value.
If an item is negative, the corresponding (positive) key will no longer select the
given key.
nkeys is the number of items in the keys list.

This method returns the number of valid key values processed. Normally this is nkeys,
but may be less if some key values in the list exceeded the maximum key value for the
queue. A zero return value may indicate that the given queue was not recognized as being
managed by the given sorter.

Oct 7 1995

Chapter 3: Frame & Packet Handling 14

3 Frame & Packet Handling

We need the frame sorter when the frame source is using TCP/IP so we can run packet
re-assemblers on other computers in an effort to balance the workload.

If the frames are coming in over ISIS IP multicasts, we don’t need a sorter: Each re-
assembler can receive all frames and discard those they don’t need. This way we get each
frame on the network one time only, and the work in each re-assembler to input and reject
frames on the wrong virtual channel is very little. If ISIS is not using true IP multicasting,
then, once again, the sorter is needed to reduce the network traffic.

There are side benefits to such a design. In cases like I&T where the frame source is
using TCP /IP, we need to sort the transfer frames by virtual channel so we can run some
packet re-assemblers on other workstations to balance the compute load. But even so, we
may re-assemble housekeeping packets on the workstation doing the frame sorting. Why
do it in a separate process? This is especially true on Solaris where we have control over
thread binding, and therefore, thread concurrency.

In a multi-threaded environment, the frame sorter and packet re-assembler both can be
constructed from a collection of objects: input tasks, output tasks, packet assembly tasks,
pool objects, sorter objects, and queue objects.

The packet re-assembler might looks like this:

input --> queue --> pkt assy --> sorter --> queue --> output

Transfer frames enter an input. Input enqueues and possibly archives them. The packet
assembly task reads frames out of the queue and constructs packets. It hands completed
packets to a sorter which enqueues them for output tasks and possibly archives them. Each
output task reads packets from its queue and sends packets out.

A control task handles new connections. It accepts a connection, read an initialization
request, and creates a new output (if that’s what was requested).

To build a frame sorter, drop the queue —> pkt assy. If we construct the tasks correctly,
this should be no problem.

3.1 Threading vs. non-threading

Since ISIS presents a multi-threaded programming interface, it is convenient to design
the software in a multi-threaded manner. Input and output tasks that do not use the ISIS
protocols require very few changes to go from the ISIS task API to a native (POSIX)
threads APL.

Unfortunately, if a system has neither ISIS or a threads library, the software design
changes to a larger degree. The data objects, like buffers, queues, and pools, are affected
less than the execution objects like inputs and outputs.

There are four possible system configurations: have ISIS and have threads, have ISIS
only, have threads only, and have neither.

ISIS & threads

Oct 7 1995

Chapter 3: Frame & Packet Handling 15

TCP/IP input
block on read() until frame received

enqueue increment threads semaphore (sem_post())
dequeue block on semaphore (sem_wait())

TCP/IP output
block on write()

threads only
TCP/IP input
same as ISIS & threads
enqueue same as ISIS & threads

dequeue same as ISIS & threads

TCP/IP output
same as ISIS & threads

ISIS only
TCP/IP input
loop on non-blocking read () and isis_select until frame received
enqueue increment in-queue count, possibly sent ISIS t_sig()
dequeue task-block on ISIS t_wait (), decrement in-queue count when t_
wait () returns
TCP/IP output
loop on non-blocking write() and isis_select until buffer writ-
ten
neither

TCP/IP input
non-blocking read, returning input file descriptor while partial
frame is read, and posting whole frame when complete and
returning zero.

enqueue add associated output file descriptor to fd_set.
dequeue if queue now empty, remove file descriptor from fd_set.

TCP/IP output
non-blocking write, returning output file descriptor while buffer
bytes remain to be written, and returning zero when whole buffer
written.

3.2 TCP/IP frame input task

There are three flavors of input task, depending on whether native threads are available,
and if not, whether ISIS threads are available or we don’t have threads at all.

In general, the input task, reads a frame and posts it to a sorter or queue. Along the
way it checks for master channel sequence errors. That’s all.

Oct 7 1995

Chapter 3: Frame & Packet Handling 16

3.2.1 native threads

The native thread receives as an argument a structure containing a file descriptor from
which to read, and a handle for the sorter to which it is to post.

It executes a blocked read() in a loop until it has read the ITP and frame header up
to the virtual channel ID. With the VCID as a key, it then allocates a buffer, and copies
what it has read so far into that buffer. Then the task goes back to the read loop until the
remainder of the frame has been read.

Once it has a complete frame, it checks the master channel sequence count and records
any discontinuity. (The program maintains a count of master channel sequence errors.)
Then it posts the buffer containing the frame to the sorter and loops back to begin reading
the next frame.

3.2.2 ISIS threads

The best performance can be obtained from this thread (according to my reading of
the ISIS documentation) by emulating the native threads task design. From that design,
replace the blocked read () with an isis_select () followed immediately by a non-blocking
read() in the same loop. The isis_select() allows us to task block waiting for input
while allowing other ISIS tasks to run. Everything else remains the same.

To more closely emulate the non-threaded design, the input task could be created by
isis_input (). In this case, everything else is as in the non-threaded design; however, the
main loop mentioned is the isis_mainloop().

3.2.3 no threads

If no threads package is available, the input task is a function. It receives the same
argument as the thread in the designs above.

This function cannot, in general read a whole frame during one execution; it is called
several times to read a complete frame. To support this, it keeps a static counter of how
many bytes of the current frame it has read.

When the function is entered, it first checks to see if it is in the middle of reading a
frame; that is, does it have a buffer allocated. If not, it allocates a buffer and zeros the
bytes read counter.

It does a non-blocking read () requesting the a number of bytes given by the frame size
minus the number of bytes read. When the read() returns, the function increments the
bytes read counter by the number of bytes read. If a complete frame has been read (frame
size - bytes read = 0), the function checks the master channel counter and posts the buffer
containing the frame to the sorter exactly as in the other designs.

Whether or not a frame has been completely read, the function returns at this point.

To support this design, there must be a main loop containing a select() call which
waits for input to be available. (It also waits for outputs to be ready, but more on that
later.) When the select () triggers on the input, it calls the frame input function outlined
above.

Oct 7 1995

Chapter 3: Frame & Packet Handling 17

3.3 TCP/IP output task

Like the TCP /1P frame input task, there are three flavors of TCP/IP output task, depend-
ing on whether native threads are available, and if not, whether ISIS threads are available
or we don’t have threads at all.

In general, the output task, gets a buffer from a queue and write it to an output file
descriptor. Simple.

3.3.1 native threads

The native thread receives as an argument a structure containing a file descriptor to
which to write, and a handle for the queue from which it is to get buffers to be output.

The thread calls into the queue to obtain a buffer (which blocks if no data is in the queue)
and then executes a blocked write() to the given output file descriptor. The write() is
in a loop to ensure that the whole buffer is written.

Once the buffer has been written, the task loops back to get the next buffer for output.

3.3.2 isis threads

As for the input task, we can get the best performance from the output thread by
emulating the native threads design. We replace the blocked write() with a non-blocked
write() coupled with (and following) an isis_select. Everything else remains the same.

To more closely emulate the non-threaded design, the output task could be created by
isis_output (). In this case, everything else is as in the non-threaded design; however, the
main loop mentioned is the isis_mainloop().

3.3.3 no threads

If no threads package is available, the output task is a function much like the input task.
The argument is the same for this function as for the tasks outlined above.

The output function is called when an output file descriptor is ready to be written.
Since we cannot, in general, expect to write a whole buffer in one non-blocked write(),
the output function may be called several times to write one buffer. To support this, it
maintains a static counter of how many bytes of the current buffer it has written.

When the function is entered, it first checks to see if it is in the middle of writing a
buffer. If not, it retreives a buffer and zeros the bytes written counter. Note that the
output function is not called if there is nothing in the queue to be written, so it cannot
block on retreiving a buffer from the queue.

The output does a non-blocking write() containing the a number of bytes given by the
buffer size minus the number of bytes written. When the write() returns, the function
decrements the bytes read counter by the number of bytes read.

Whether or not a frame has been completely read, the function returns at this point.

To support this design, there must be a main loop containing a select () call which
waits for output descritors to be ready for writing. (The same select() also waits for
inputs to be ready.) When the select() triggers on the output, it calls the frame input

Oct 7 1995

Chapter 3: Frame & Packet Handling 18

function outlined above. An output descriptor is added to the select()’s write fd_set
only if there are buffers queued to that output.

3.4 queue object

Like the TCP/IP input and output tasks, there are three flavors of the queue object
software, depending on whether native threads are available, and if not, whether ISIS
threads are available or we don’t have threads at all.

The queue object includes a gatekeeping mechanism which prevents the output from
extracting data beyond the end of the queue. This object cooperates in either blocking the
output thread execution, if we have a threads package, or arranging for the output function
to be called or not, if the code is not multi-threaded.

3.4.1 native threads

When a thread posts a buffer to a queue (usually through a sorter), the queue increments
a associated semaphore (calling POSIX sem_post(), for example). This operation never
blocks.

An output thread associated with a queue calls the queue to obtain the next buffer
for output. Before that call retreives a buffer, it issues a sem_wait() to decrement the
semaphore. This function blocks the thread if the semaphore is zero, indicating that there
is no data in the queue.

The thread will be unblocked the next time another thread posts a buffer to the queue.
The call will continue, retrieve a buffer, and return it to the output thread (which is then
free to block in a write()).

3.4.2 isis threads

The design of this aspect of the queue for this case depends on the design of the output
task.

3.4.2.1 threaded output

The 1s1S threads package doesn’t supply a semaphore, as such, but we can construct on
easily with the 1SI1S functions t_wait () and t_sig() coupled with a variable which counts
the number of buffers in the queue.

On posting a buffer, the queue increments the buffer count and issues a t_sig() to mark
as runnable an output task waiting on the queue.

When retreiving a buffer, the queue checks the number of buffers in the queue. If it’s
greater than zero, it gets the next buffer, decrements the count, and returns the buffer to
the caller. If the buffer count is zero, the queue calls t_wait () to block until another buffer
is added to the queue.

Oct 7 1995

Chapter 3: Frame & Packet Handling 19

3.4.2.2 function output

Since in this case the output is called automatically by 1SIS as an isis_output (), we
have to arrange in the queue to remove the output when no buffers are enqueued.

On posting a buffer, the queue calls isis_output () to add an output task to write the
buffer out of the queue. The queue will need to know what file descriptor is associated with
in order to do this.

On retreiving a buffer, the queue calls isis_wait_cancel() to remove output task if
the queue is empty and it returns an empty queue indication. The output function which
recognize the empty queue condition and returns.

3.4.3 no threads

With no threads package, the queue object has to manipulate the write fd_set used in
the select () call in the program’s main loop. To do this, the queue object needs to know
about the output descriptor with which it is associated.

When posting a buffer, the queue adds the associated output file descriptor to the main
loop select () call’s write fd_set. This allows an output function to be called to get the
buffer off the queue when the output file is ready for writing.

On retreiving a buffer, the queue removes the the associated output file descriptor from
the main loop select() call’s write fd_set if the queue is empty. It returns an empty
queue indication to the output function which recognizes this condition and returns.

Oct 7 1995

Chapter 4: Frame Sorter Design 20

4 Frame Sorter Design

This is the basic design for the frame sorter I actually propose building for our first
effort. It is non-threaded and does not use ISIS.

The main() function does a little setup and calls the mainloop() function. When the
program starts, it configures it’s standard input and output as a control connection. It also
creates an internet domain socket on which to listen for connection requests.

The mainloop() function contains the select () system call and dispatch logic: It calls
the input, output, and configure functions, depending on what descriptors are ready to be
read or written.

The mainloop () function is part of a mainloop package, which contains other functions
to add and delete inputs and outputs and to add input and output file descriptors to the
select ().

The designs of the input and output functions have been laid out in the Chapter 3 [Frame
& Packet Handling], page 14 chapter.

There also needs to be a function to handle commands to reconfigure the program once
it is running. In fact, one way to handle the command line options is to force the user to
give an ASCII command rather than traditional UNIX program options.

4.1 main function
4.2 mainloop package

4.3 command handler

The command handler reads ascii commands from a command connection and executes
them.

The commands are:

‘req’ request data from the program

‘go’ start a data flow

‘cfg’ reconfigure filtering on a data connection
‘brk’ break an input or output connection
‘con’ form a connection to a data source

4.3.1 request data
‘req’ who what filter
where:

who is a requester ID string of the form name:pid@host where name identifies the
process making the request, pid is its process ID, and host is the hostname
where the process is running.

Oct 7 1995

Chapter 4: Frame Sorter Design 21

what is either ‘tf’ for transfer frames or ‘pkt’ for packets. This is included for
situations where frames and packets may be handled by the same program.

filter is a string of the form key,key,... where each key is a virtual channel ID or
packet 1D. All frames or packets are selected for output by default. If all keys
are negative, the corresponding frames or packets are filtered out. If any keys
are positive, the default changes to everything being filtered out and positive
key values then select their corresponding frames or packets.

response:
‘ok’ who ref#
where:
who is the identifier from the ‘req’ command.
ref# is the reference number for the new connection created by the request. This is

used in subsequent commands as a handle for the connection.

sorter / assembler command: go ref#
response: (data flows...)

command: cfg who ref# filter
response: ok who ref#

command: brk who ref#

response: ok who ref#

command: con who where where = hostname:port response ok who ref#

Oct 7 1995

Chapter 5: Ascii Commands 22

5 Ascii Commands

The telemetry software needs to be controlled by the STOL interpreter and other ex-
ternal programs. Toward that end, the various programs will accept ASCII commands and
issue ASCII responses.

The following are the commands that will be recognized by the telemetry software. For
each, the command actually sent is the two-character abbreviation.

The only external control interface for the telemetry software is the telemetry controller.
The controller accepts most of the commands above.

5.1 connect (cn)

The ‘cn’ command tells a telemtry frame_sorter to connect to a frame source. With
the frame parameters given by the ‘fp’ command, parameters to ‘cn’ give all remaining
information needed to ingest the telemetry frames.

Important: This command is accepted only by the frame_sorter, not by the telemetry
controller.

The syntax of the ‘cn’ command is:

cn <station> <transport> <source> [<wrapper> ...]
cn break

In the first form of the command, the ‘cn’ command forms a connection to a teleme-
try source; and in the second case, it breaks any existing connection. The subsequent
explanation deals with the first form.

The station parameter is the name of the ground station or device to which we are
connecting. It is used only for the formation of archive file names.

The transport is the type of network or other transport by which we are to get the
telemetry data. Currently, this may be one of:

‘tcp’ for the TCP /1P (transmission control protocol / internet protocol). The frame_
sorter initiates the connection.

‘server_tcp’
for the TCP/1P also, but in this case, the frame_sorter listens for a connection.
If once established the connection is broken, the frame_sorter will return to
listening for another connection.

b

‘udp for the UDP 1P (user datagram protocol / internet protocol).

‘isis’ for the Isis reliable multicasting protocol, which typically is layered upon UDP.

The form of the source parameter depends on the transport. For ‘tcp’ and ‘udp’, source
is a space-separated combination of hostname and 1P port number to which to form a TCP
connection or a UDP association. For ‘server_tcp’, source is the port number on which
to listen for a connection. If the port number is ‘¥’, the system will choose an available
port. For the ‘isis’ transport, source is the name of an Isis group from which data is to
be obtained.

Oct 7 1995

Chapter 5: Ascii Commands 23

The optional wrapper parameters are names associated with an encapsulation around
each frame added by the data source. The wrapper may consist of a header, a trailer,
or both. Wrappers should be specified in order, from the outermost to the innermost.
Currently recognized wrapper names are:

‘itp’ for the 16-byte header that is produced by the Code 521 Front-end Telemetry
& Command Processor (FTCP), called the ITP or MEDS header.

‘ftcp’ for the combination of the ITP header with an 8-byte trailer also produced by
the FTCP.

‘smexddd’ for the header derived from combining the DSN (Deep Space Network) Data
Delivery (DDD) header with a project-specific secondary header designed for
use by TRACE and following SMEX missions.

‘fepb521’ for the header produced by another Code 521 Front-end Processor, and being
used in conjunction with the SPUDD.

‘annol12t’ for the 12-byte annotation trailer added to each frame by the frame_sorter
itself. This must be given as the outermost wrapper when a frame_sorter is
reading frames from another frame_sorter.

If the data source adds no encapsulation, no wrapper should be specified.

The response to a successful ‘cn’ command is:
ok

5.2 acquire (ac)

The ‘ac’ command is a request for a telemetry data flow of frames, packets, or data
points. It normally is used by a client to request a connection to a source of packets or
frames, or by a STOL interpreter to request that a data unpack program be started and
connected to a packet source.

The syntax of the acquire command is:

ac <transport> [<destination>] <datatype> [<filter>]
ac off <handle>

In the first form, a data flow is commanded. The transport may be one of:

‘tcp’ to request that the telemetry subsystem create a TCP socket and listen for
connection requests. The response message will contain the hostname and port
number to which the requestor may connect. For this transport, no destination
may be specified.

‘udp’ to request that the telemetry subsystem send the requested data using UDP
datagrams. For this transport, the destination must be a space-separated host-
name and port number combination specifying where the datagrams should be
sent.

‘isis’ to request that the telemetry subsystem join an Isis group and send the re-

quested data to that group. In this case, the destination must be the name of
the Isis group to which the data should be sent.

Oct 7 1995

Chapter 5: Ascii Commands 24

‘client_tcp’
to request that the telemetry subsystem initiate a TCP connection to the given
destination. The destination must be a space-separated hostname and port
number combination.

Please note that only the the ‘tcp’ transport is supported at this time.
The datatype argument specifies what kind of data is desired. It may be one of:

‘frames’ for requesting annotated frames. Each frame, complete with it’s source header
and trailer (if any), will have the standard 12-byte annotation appended to it.

‘pkts’ for requesting annotated packets. This is supported only for CCSDS telemetry.
All packets will be prepened with a 16-byte 1TP header followed by the standard
12-byte annotation.

‘data’ for requesting data unpacking. The effect of this command is to start a data
unpack program and to connect it to a source of packets.

See Section 5.5.1 [filter syntax], page 26 for information on the optional ‘filter’ param-
eter. If a filter is not specified, all data of the requested type will be sent.

Important: Commands requesting packets on multiple virtual channels (for ccsps
telemetry) using either TCP transport presently are not allowed. This is because the virtual
channels are demultiplexed and packets are extracted on each channel independently.
Applications requiring packets from more than one VC using a TCP transport must make
one request and one data connection for each vC on which data is desired. We hope to
offer in the near future the ability to multiplex the packets from multiple vCs onto a single
connection, and so to make them available using a single request.

The response to a successful ‘ac’ command to start a data flow is of the form:
ok <handle> [<host> <port>]

The handle parameter is an opaque (to the client) identifier for the connection which
is to be — or has been — establishted. This handle can be passed to ‘ac off’ or the filter
command ‘fi’.

The host and port will be included if the requested transport was TCP.

In the second form above, the acquire command stops a data flow.

Termination of data flows by TCP clients should be done simply by breaking the connec-
tion. The ‘ac off’ command must be used to stop flows using the other transports.

Examples

ac tcp pkts vcO 12 1 16 7 22
ok host_a 31009

ac tcp pkts vc2 not 24 27
ok host_b 32012

The first command requests packets (application 1Ds) 1, 7, 12, 16, 22 on virtual channel
zero. The response directs us to connect to port 31009 on a machine called "host_a". The
second command requests all packets except 24 and 27 on virtual channel two. The response
directs us to connect to port 32012 on "host_b" for those packets.

Oct 7 1995

Chapter 5: Ascii Commands 25

ac tcp frames

ok host_a 32110

ac udp myhost 34000 frames not vc2
ok

ac isis mysat_vcO pkts vcO

ok

The first command requests all frames. The response directs us to connect to port
32110 on machine "host_a". The second command asks for all frames except those on
virtual channel two to be send in UDP datagrams to port 34000 on host "myhost". The
third command directs that all packets on virtual channel zero be sent to the Isis group
"mysat_vc0".

(Please note that it may be necessary to add a host and port to the response to ‘ac udp’
commands when those commands are implemented.)

5.3 archive (ar)

The ‘ar’ command tells the telemetry system to store telemetry in disk files as it is
ingested and processed.

The syntax of the archive command is:
ar <datatype> <filename> <pool_size> [<filter>]

The datatype parameter specified what type of data should be archived. It may be
either ‘frames’ to archive annotated frames, or ‘pkts’ to archive annotated packets.

The filename parameter specifies the name of the archive file. The special name ‘default’
may be used to allow the software to generate the filename based on mission and connection
parameters.

Archives are composed of one or more fixed size files, and the pool_size parameter controls
the size of each of those files. If a zero size is given, a default size will be used.

See Section 5.5.1 [filter syntax], page 26 for information on the optional ‘filter’ param-
eter. If a filter is not specified, all data of the requested type will be archived.

The response to a successful archive command is simply ‘ok’.

5.4 playback (pb)

The ‘pb’ command is used to request the playback of ITOS telemetry archive files. It is
very much like the acquire command, but has three additional parameters.

The syntax of the playback command is:

pb <datatype> <transport> <destination> <filename> <timetype> [<start>
pb off

The datatype, transport, and destination parameters are exactly as in the aquire com-
mand. Note however, that a playback command requesting frames from a file containing
packets will fail.

The filename parameter specifies the name of the archive to replay. This may be given
as an asterisk (‘*’) if actual start and stop times are given.

Oct 7 1995

<stop>] [<filte

Chapter 5: Ascii Commands 26

Archive files may be replayed according to timetags on the data. Both spacecraft and
ground-received time is maintained for each transfer frame or packet. The timetype param-
eter tells which of these times to use in comparing against the start and stop times given
by the next two parameters. It may be one of:

‘sc’ to compare against spacecraft time. This is the default.

‘gnd’ to compare against ground-received time. This is the time at which the frame
was received by the ground system.

‘none’ if no start or stop times are given. In this case, then, the start and stop must
not be included in the command.

The start and stop parameters are the start and stop times, respectively, over which the
archived data should be replayed. If a filename has been specified, one or the other may be
given as ‘0’ to indicate that all packets before stop or all packets from start onward should
be played from the file. To replay the whole file, use a timetype of ‘none’.

See Section 5.5.1 [filter syntax], page 26 for information on the optional ‘filter’ param-
eter. If a filter is not specified, all data of the requested type will be replayed. Note that
the same filter restrictions regarding packets on multiple virtual channels exist for playback
of frame files as for aquiring live data.

The response to the playback command is identical to that for the acquire command.
Section 5.2 [acquire (ac)], page 23

5.5 filter (fi)

The ‘fi’ command is used to change the data filtering on an existing connection. For
example, if a program is receiving all packets on vC0 and then wishes to exclude packet 10,
it can issue a filter command to do it.

The syntax of the filter command is:

fi <handle> <filter>

The handle parameter is a handle returned by an acquire (‘ac’) or playback (‘pb’) com-

mand. It is the identifier for the data connection for which we are changing the filtering.

The filter syntax itself is described below.

5.5.1 filter syntax

filter parameters are the means by which the program sending the command tells the
telemetry software what data it wants. The filter syntax is described by the following
grammar:
filter: queue-control filter-op filter—not filter-spec-list
filter-spec-list: /* empty */
filter-spec-list filter-spec

filter-spec: vcid
vcid filter-op filter-not apid-list
appid-list

apid-list: /* empty */

Oct 7 1995

Chapter 5: Ascii Commands 27

apid-list apid

veid: ’ve0? | ’vel’ | ’vc2’ | ... vcT?
apid: <integer O through 2047>
filter-op: /* empty */

’add’

’drop’
filter-not: /* empty */

’not’
queue-control: /* empty */

’qc’ opt-limit <integer queue-pool size>
opt-limit: /* empty */

’limit’

Virtual channels are identified by ‘vc’ with a trailing digit one through seven; for ex-
ample, ‘vc0’ is virtual channel zero. Packet IDs (also called application IDs) are decimal
numbers zero through 2047 (for cosps).

If no filter is given, "all" is implied. For packet filters, a VCID not followed by any packet
1Ds implies all packets on the given vC.

The keyword ‘not’ is used to invert the sense of the filter. Normally, the filter sense is
positive; that is, you get what you ask for. The ‘not’ makes it negative sense: You get
everything except what follows the ‘not’.

In the filter (‘fi’) and archive (‘ar’) commands, the keywords ‘add’ and ‘drop’ may
be used in addition to the ‘not’ keyword, and in the same locations, to augment existing
filtering. This works exactly as one would expect. Requests to drop things not currently
active might draw a warning, but are never errors.

Note that a simple list of VCs and/or APIDs and such lists negated (containing ‘not’),
form an "absolute" filter; that is, a filter which replaces any filter previously in place for the
thing (an output or archive) in question. Filters containing ‘add’ and/or ‘drop’ keywords
modify a previously existing filter.

The queue-control part of the filter may be used to control two aspects of the output
queue associated with the given output. The queue-control is introduced with the ‘qc’
keyword. If the optional keyword ‘limit’ follows, the number of buffers in the output
queue will be limited to the size of a single memory pool used by the queue. The size of the
queue memory pool is the next argument. Apart from it’s use to limit the output queue
size, the memory pool size may be used to tune the performance of an output queue.

Examples
vcO vcl vc2 all packets on VCs O, 1, & 2.
vcO 21 23 24 vc2 packets 21, 23, & 24 on VCO & all packets on VC2
123 packets 1, 2, & 3

The examples above are all in the positive sense; that is, they tell what we want. The
‘not’ keyword allows specifications in the negative sense, telling what we don’t want:
not vcO vc2 2 13 send all except vcO & vc2 pkts 2 & 13
vcl not 2 3 9 send only vcl, but not packets 2, 3, or 9
not vc2 not 2 send all except vc2, but send pkt 2 on vc2 also

Oct 7 1995

Chapter 5: Ascii Commands 28

Note that double negatives are acceptable only in the context given in the third example.
The construct "vc0 not vcl" will be rejected as bad syntax.

If we take an output with filtering ‘vc0 1 2 3 vcl’:

add vc2 send vc2 in addition
drop vcl stop sending vcl data
vcO add 4 5 6 begin sending pkts 4, 5, & 6 on vcO, also

Note that in the last case, the ‘add’ could have been placed before the ‘vc0’ to the same
effect.

qc limit 100 vcO all pkts on vcO, queue no more than 100 pkts

Use a queue limit if the process receiving the data can’t keep up with the data rate, yet
you want the data it sees to be contemporaneous.

5.6 greeting (hi)

The greeting (not really a command) is used to identify a client to the telemetry con-
troller. It is not required of clients, but it allows the controller to call a client by name on
controller displays and in event messages.

The syntax of the greeting is:
hi <program> <pid> <hostname> [<comment>]

Obviously, the client program can supply any information for the parameters, but the
controller expects the following.

The program parameter is the name of the client program; pid is the client’s process ID;
and hostname is the name of the machine where the client program is running.

The comment is a short, optional explanatory text.

There currently is no response to the greeting, though I suppose the controller should
respond with ‘hi’; just to be polite.

5.7 frmparms (fp)

The ‘fp’ command is used to tell the frame_sorter what sort of frames it will be
processing. This command should not be sent to the telemetry controller. It is sent from
the controller to frame_sorters, with the appropriate parameters derived from the mission
database.

The syntax of the frameparms command is:
fp <mission> <frame_type> [<tf_length> <tf_version> <scid>]

The mission parameter is used to form the default archive file name. It should be the
mission name.

The frame_type is the type of frame the frame_sorter can expect to read. Presently,
‘ccsds’ is the only frame type supported. In the near future, we expect to add a type to
support Spartan missions.

For ccsps frames, three additional parameters are required:

Oct 7 1995

Chapter 5: Ascii Commands 29

The tf length is the cosDS transfer frame length, including the sync and CRC bytes.
This length does not include any header or trailer added by the telemetry source (a ground
station or front-end processor).

The tf version is the expected CCSDS transfer frame version. Presently, only version 1
frames are supported, so this always should be set to zero.

The scid parameter is the spacecraft the frame_sorter should expect to find in the
transfer frame header.

The standard ‘ok’ response is given for successful frameparms command.

5.8 reasm (ra)

This command is issued by the controller to the frame_sorter to begin (or stop) re-
assembling CCSDS source packets on one virtual channel.

The syntax of the reassemble command is:
ra <vc> [stop]

The vc parameter is a single digit zero to seven indicating the virtual channel on which
packets should be reassembled. Appending the keyword ‘off’ changes the ‘ra’ into a com-
mand to stop reassembling packets on the given virtual channel.

The response to this command depends on the current state of the frame sorter. For
commands to start reassembly, if the input is connected, the response will be ‘ok start’;
otherwise, it will be ‘ok setup’.

For commands to stop reassembly, the response is ‘ok stop’. This is true even if we are
not reassembling packets on the given vC.

Oct 7 1995

Index

Index

(Index is nonexistent)

Oct 7 1995

30

Table of Contents

1 OVerview........iiiuiiiieeiiennnsnnnnnanans
1.1 The Basic Telemetry Flow
1.2 The Common Qutput Module............................
1.3 The Transfer Frame Sorter...............................
1.4 The Packet Re-Assembler............
1.5 The Data Unpacker
1.6 The Telemetry Flow Controller...........................
1.7 The Telemetry Archiver and Playback

2 Building Blocks..................iia..
2.1 Memory Management.ooiiiiiiiiii ...
2.2 pools of virtual memory

2.2.1 pool data structures
2.2.1.1 Control record for each pool
2.2.1.2 Pool Control Structure (Pool List).......
2213 PoolBuffers.................,

222 poolcreate........oooiiiiiiii i

2.2.3 poolcreate pool

2.2.4 pooldestroy pool.........

2.2.5 poolallocate buffer

2.2.6 poolretrievebufferl

2.2.7 pooladjustrefcount..............

2.3 bufferqueues

2.3.1 queue data structures...........................

2.3.2 queuecreate............l

2.3.3 queuedestroy,

2.34 queueallocbuffer..........

2.3.5 queuepostbuffer..............................

2.3.6 queue get next buffer,

2.3.7 queuecontrol....... L.

2.4 poolmanagement

2.4.1 Archiver data structures

2.4.2 archiver manage pool

2.4.3 archiver allocbuffer............................

244 bufferadjrefcount............................

2.5 queuemanagement.....................iiiiiiiiiia.

2.5.1 sorter data structures..........................

2.5.2 sorter manage queue....................... ...

2.5.3 sorter allocbuffer...........

254 sorter post buffer........... L

2.5.5 sorter post buffer........... L

Oct 7 1995

3 Frame & Packet Handling................. 14
3.1 Threading vs. non-threading 14
3.2 TCP/IP frame input task 15

3.2.1 mnativethreads............ 16

3.22 ISISthreads............ccoiviiiiii ... 16

323 mnothreads 16

3.3 TCP/IP output task................ 17
3.3.1 mnativethreads................................. 17

3.3.2 isisthreads.............. 17

3.33 mnothreads 17

34 queueobject........ ... 18
3.4.1 mnativethreads............. 18

342 isisthreads.............oooiiiiiiin i, 18
3.4.2.1 threaded output 18

3.4.2.2 functionoutput....................... 19

343 mnothreads 19

4 Frame Sorter Design...................... 20
41 mainfunction............ ... 20
4.2 mainloop package 20
4.3 command handler........ 20

4.3.1 requestdata.......... 20

5 AsciiCommandS........coveeevrnensnenses 22

5.1 connect (CI) ...t 22

5.2 acquire (AC)uuiuritt i 23

5.3 archive (ar)........... ... 25

5.4 playback (Pb)ooii 25

5.5 filter (f)....ooinni 26

55.1 filtersyntax............cooiiiiiiiiiii.. 26

5.6 greeting (hi)......... ..o 28

5.7 frmparms (fp)......covrinii 28

5.8 TEASIL (TA) . ..t vvet et ettt e e 29
Indexciii i 30

Oct 7 1995

ii

